1 A look - ahead algorithm for the solution of block Toeplitz systems Marc
نویسندگان
چکیده
In this paper, we give a weakly stable algorithm to solve a block Toeplitz system of linear equations. If the \look-ahead" steps taken to compute the parameters of the inversion formula for the block Toeplitz matrix are small compared to the order n of the matrix, the algorithm requires O(n 2) oating point operations. The parameters of the inversion formula are interpreted and computed in a recursive way as solutions of certain interpolation problems given the formal Laurent series based on the data of the block Toeplitz matrix.
منابع مشابه
Look - ahead schemes for block Toeplitz systems and formalorthogonal matrix polynomials
In this paper, a so-called auxiliary matrix polynomial Xn(z) and a true right formal orthogonal matrix polynomial (FOMP) A 1 n (z) is connected to each well-conditioned leading principal block submatrix of a given block Toeplitz matrix. From these two matrix polynomi-als, all other right FOMPs of block n of a system of block biorthogonal matrix polynomials with respect to the block Toeplitz mom...
متن کاملA Block Toeplitz Look - Ahead Schur
This paper gives a look-ahead Schur algorithm for nding the symmetric factorization of a Hermitian block Toeplitz matrix. The method is based on matrix operations and does not require any relations with orthogonal polynomials. The simplicity of the matrix based approach ought to shed new light on other issues such as parallelism and numerical stability.
متن کاملA Look-ahead Bareiss Algorithm for General Toeplitz Matrices
The Bareiss algorithm is one of the classical fast solvers for systems of linear equations with Toeplitz coeecient matrices. The method takes advantage of the special structure, and it computes the solution of a Toeplitz system of order N with only O(N 2) arithmetic operations, instead of O(N 3) operations. However, the original Bareiss algorithm requires that all leading principal sub-matrices...
متن کاملA Block Toeplitz Look-ahead Schur Algorithm
This paper gives a look-ahead Schur algorithm for nding the symmetric factorization of a Hermitian block Toeplitz matrix. The method is based on matrix operations and does not require any relations with orthogonal polynomials. The simplicity of the matrix based approach ought to shed new light on other issues such as parallelism and numerical stability.
متن کاملA direct method to solve block banded block Toeplitz systems with non-banded Toeplitz blocks
A fast solution algorithm is proposed for solving block banded block Toeplitz systems with non-banded Toeplitz blocks. The algorithm constructs the circulant transformation of a given Toeplitz system and then by means of the Sherman-Morrison-Woodbury formula transforms its inverse to an inverse of the original matrix. The block circulant matrix with Toeplitz blocks is converted to a block diago...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995